Tourism Economics——作者:李玲

  论文标题:A novel BEMD-based method for forecasting tourist volume with search engine data

  发表时间:2020.03

  论文所有作者:Tang Ling, Zhang Chengyuan, Li Ling

  期刊名及所属分类:Tourism Economics(国际SSCI or SCI)

  英文摘要:As helpful big data, search engine data (SED) regarding tourism-related factors have currently been introduced to tourist volume prediction, but they have been shown to impact the tourism market on different timescales (or frequency band). This study develops a novel forecasting method using an emerging multiscale analysis—bivariate empirical mode decomposition (BEMD)—to investigate multiscale relationships. Three major steps are performed: (1) SED process to construct an informative index from sufficient SED using statistical analyses, (2) multiscale analysis to extract scale-aligned common factors from the bivariate data of tourist volumes and SED using BEMD, and (3) tourist volume prediction using an SED-based index. In the empirical study, the novel BEMD-based method with SED is used to forecast the tourist volume of Hainan in China, a global tourist attraction, and significantly outperforms both popular techniques (not considering SED or multiscales) and similar variants (considering SED or multiscales) in accuracy and robustness.

  中文摘要:搜索引擎数据(SED)作为一种有用的大数据,目前已被引入到旅游相关因素的预测中,但它们已被证明在不同的时间尺度(或频带)影响旅游市场。本研究利用新兴的多尺度分析方法——双变量经验模态分解(BEMD)开发了一种新的预测方法来研究多尺度关系。本研究主要采取三个步骤:(1)利用统计分析方法,利用充分的SED过程构建信息指数;(2)利用多尺度分析方法,从旅游客流量和SED usina BEMD二元数据中提取尺度一致的公共因子;(3)利用SED指数进行客流量预测。在实证研究中,将基于bemd的新方法与SED相结合,对全球旅游胜地中国海南的客流量进行预测,结果表明,该方法的预测精度和稳健性均显著优于目前流行的方法(不考虑SED或多尺度)和类似的方法(考虑SED或多尺度)。